Plamen Angelov

Prof. Plamen Angelov (MEng 1989, PhD 1993, DSc 2015) is a Fellow of the IEEE, of the IET and of the HEA. He is Vice President of the International Neural Networks Society (INNS) for Conference and Governor of the Systems, Man and Cybernetics Society of the IEEE. He has 25+ years of professional experience in high level research and holds a Personal Chair in Intelligent Systems at Lancaster University, UK. He leads the Data Science group at the School of Computing and Communications which includes over 20 academics, researchers and PhD students. He has authored or co-authored 300 peer-reviewed publications in leading journals, peer-reviewed conference proceedings, 6 patents, two research monographs (by Wiley, 2012 and Springer, 2002) cited over 6550+ times with an h-index of 39 and i10-index of 111. His single most cited paper has 810 citations. He has an active research portfolio in the area of computational intelligence and machine learning and internationally recognised results into online and evolving learning and algorithms for knowledge extraction in the form of human-intelligible fuzzy rule-based systems. Prof. Angelov leads numerous projects (including several multimillion ones) funded by UK research councils, EU, industry, UK MoD. His research was recognised by ‘The Engineer Innovation and Technology 2008 Special Award’ and ‘For outstanding Services’ (2013) by IEEE and INNS. He is also the founding co-Editor-in-Chief of Springer’s journal on Evolving Systems and Associate Editor of several leading international scientific journals, including IEEE Transactions on Fuzzy Systems (the IEEE Transactions with the highest impact factor) of the IEEE Transactions on Systems, Man and Cybernetics as well as of several other journals such as Applied Soft Computing, Fuzzy Sets and Systems, Soft Computing, etc. He gave over a dozen plenary and key note talks at high profile conferences. Prof. Angelov was General co-Chair of a number of high profile conferences including IJCNN2013, Dallas, TX; IJCNN2015, Killarney, Ireland; the inaugural INNS Conference on Big Data, San Francisco; the 2nd INNS Conference on Big Data, Thessaloniki, Greece and a series of annual IEEE Symposia on Evolving and Adaptive Intelligent Systems. Dr Angelov is the founding Chair of the Technical Committee on Evolving Intelligent Systems, SMC Society of the IEEE and was previously chairing the Standards Committee of the Computational Intelligent Society of the IEEE (2010-2012). He was also a member of International Program Committee of over 100 international conferences (primarily IEEE). More details can be found at

Empirical Approach: How to get Fast, Interpretable Deep Learning

We are witnessing an explosion of data (streams) being generated and growing exponentially. Nowadays we carry in our pockets Gigabytes of data in the form of USB flash memory sticks, smartphones, smartwatches etc. Extracting useful information and knowledge from these big data streams is of immense importance for the society, economy and science. Deep Learning quickly become a synonymous of a powerful method to enable items and processes with elements of AI in the sense that it makes possible human like performance in recognising images and speech. However, the currently used methods for deep learning which are based on neural networks (recurrent, belief, etc.) is opaque (not transparent), requires huge amount of training data and computing power (hours of training using GPUs), is offline and its online versions based on reinforcement learning has no proven convergence, does not guarantee same result for the same input (lacks repeatability).

The speaker recently introduced a new concept of empirical approach to machine learning and fuzzy sets and systems, had proven convergence for a class of such models and used the link between neural networks and fuzzy systems (neuro-fuzzy systems are known to have a duality from the radial basis functions (RBF) networks and fuzzy rule based models and having the key property of universal approximation proven for both).

In this talk he will present in a systematic way the basics of the newly introduced Empirical Approach to Machine Learning, Fuzzy Sets and Systems and its applications to problems like: anomaly detection, clustering, classification, prediction and control. The major advantages of this new paradigm is the liberation from the restrictive and often unrealistic assumptions and requirements concerning the nature of the data (random, deterministic, fuzzy), the need to formulate and assume a priori the type of distribution models, membership functions, the independence of the individual data observations, their large (theoretically infinite) number, etc. From a pragmatic point of view, this direct approach from data (streams) to complex, layered model representation is automated fully and leads to very efficient model structures. In addition, the proposed new concept learns in a way similar to the way people learn – it can start from a single example. The reason why the proposed new approach makes this possible is because it is prototype based and non-parametric.